Показано с 1 по 5 из 5

Тема: Большой адро́нный колла́йдер

  1. #1
    Super Moderator Аватар для Калюня
    Регистрация
    09.06.2008
    Адрес
    Украина Хмельницкий
    Сообщений
    2,897
    Поблагодарил(а)
    9
    Благодарностей: 167 (сообщений: 74)

    По умолчанию Большой адро́нный колла́йдер

    Большой адро́нный колла́йдер (англ. Large Hadron Collider, LHC) — ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжёлых ионов (ионов свинца), построенный в научно-исследовательском центре Европейского совета ядерных исследований (фр. Conseil Europйen pour la Recherche Nuclйaire, CERN).


    27-километровый подземный туннель, предназначенный для размещения ускорителя LHC[/I]

    Первый ускоритель частиц Большого Адронного Коллайдера

    Большим он назван из-за своих размеров — длина основного кольца ускорителя составляет 26,7 километров. Вследствие того, что он ускоряет протоны и тяжёлые ионы, которые являются адронами, его и назвали «адронным». Коллайдером же (англ. collide — сталкиваться) он называется потому, что ускоряет частицы на встречных пучках.[1]

    Поставленные задачи

    В начале XX века в физике появились две основополагающие теории — общая теория относительности (ОТО) Альберта Эйнштейна, которая описывает Вселенную на макроуровне, и квантовая теория поля, которая описывает Вселенную на микроуровне. Проблема в том, что эти теории несовместимы друг с другом. Например, для адекватного описания происходящего в чёрных дырах нужны обе теории, а они вступают в противоречие.

    Ещё Эйнштейн в последние годы жизни хотел разработать Единую теорию поля, но количество эмпирического материала было тогда недостаточно. Во второй трети XX века физикам удалось разработать Стандартную Модель (СМ), которая объединяла три из четырёх фундаментальных взаимодействий — сильное, слабое и электромагнитное.

    В конце XX века физики начали разрабатывать теорию, которая смогла бы объединить все четыре взаимодействия. Оказалось, однако, что добавить в СМ гравитационное взаимодействие чрезвычайно трудно. Таким образом, в настоящее время фундаментальные взаимодействия описываются двумя общепринятыми теориями: ОТО и СМ. Их объединения пока достичь не удалось из-за трудностей создания теории квантовой гравитации. Для дальнейшего объединения фундаментальных взаимодействий в одной теории используются различные подходы: теория струн, получившая своё развитие в М-теории (или теории бран), теория супергравитации, петлевая квантовая гравитация и др.

    Некоторые из них имеют внутренние проблемы, и ни у одной из них нет экспериментального подтверждения. Проблема в том, что для проведения соответствующих экспериментов нужны энергии, недостижимые на современных ускорителях заряженных частиц.

    Этот ускоритель позволит провести эксперименты, которые ранее было невозможно провести и, вероятно, подтвердит или опровергнет часть этих теорий. Так, существует целый спектр физических теорий с размерностями больше четырёх, которые предполагают существование «суперсимметрии» — например, теория суперструн. Подтверждение существования суперсимметрии, таким образом, будет косвенным подтверждением истинности этих теорий.

    Изучение топ-кварков

    Топ-кварк — самый тяжёлый кварк и, более того, это самая тяжёлая из открытых пока элементарных частиц. Согласно последним результатам Тэватрона, его масса составляет 171,4 ± 2,1 ГэВ. Из-за своей большой массы топ-кварк до сих пор наблюдался пока лишь на одном ускорителе — Тэватроне, на других ускорителях просто не хватало энергии для его рождения. Кроме того, топ-кварки интересуют физиков не только сами по себе, но и как «рабочий инструмент» для изучения хиггсовского бозона. Один из наиболее важных каналов рождения хиггсовского бозона в БАК — ассоциативное рождение вместе с топ-кварк-антикварковой парой. Для того, чтобы надёжно отделять такие события от фона, надо вначале хорошо изучить свойства самих топ-кварков.

    Изучение механизма электрослабой симметрии

    Одной из основных целей проекта является экспериментальное доказательство существования бозона Хиггса — частицы, предсказанной шотландским физиком Питером Хиггсом в 1964 году в рамках Стандартной Модели. На самом деле, физиков интересует не столько сам хиггсовский бозон, сколько хиггсовский механизм нарушения электрослабой симметрии. Именно изучение этого механизма, возможно, натолкнёт физиков на новую теорию мира, более глубокую, чем СМ.

    Изучение кварк-глюонной плазмы

    Ожидается, что в ускорителе в режиме ядерных столкновений будут происходить не только протон-протонные столкновения, но и столкновения ядер свинца. При лобовом столкновении двух ядер на ультрарелятивистских скоростях на короткое время образуется и затем распадается плотный и очень горячий комок ядерного вещества. Понимание происходящих при этом явлений (переход вещества в состояние кварк-глюонной плазмы и её остывание) нужно для построения более совершенной теории сильных взаимодействий, которая окажется полезной как для ядерной физики, так и для астрофизики.

    Поиск суперсимметрии

    Первым значительным научным достижением экспериментов на БАК может стать доказательство или опровержение «суперсимметрии» — теории, гласящей, что любая субатомная частица имеет гораздо более тяжёлого партнера, или «суперчастицу».

    Изучение фотон-адронных и фотон-фотонных столкновений

    Протоны электрически заряжены, поэтому ультрарелятивистский протон порождает облако почти реальных фотонов, летящих рядом с протоном. Этот поток фотонов становится ещё сильнее в режиме ядерных столкновений, из-за большого электрического заряда ядра. Эти фотоны могут столкнуться как встречным протоном, порождая типичные фотон-адронные столкновения, так и друг с другом.

    Проверка экзотических теорий

    Теоретики в конце XX века выдвинули огромное число необычных идей относительно устройства мира, которые все вместе называются «экзотическими моделями». Сюда относятся теории с сильной гравитацией на масштабе энергий порядка 1 ТэВ, модели с большим количеством пространственных измерений, преонные модели, в которых кварки и лептон являются составными частицами, модели с новыми типами взаимодействия. Дело в том, что накопленных экспериментальных данных оказывается всё ещё недостаточно для создания одной-единственной теории. А сами все эти теории совместимы с имеющимися экспериментальными данными. Поскольку в этих теориях можно сделать конкретные предсказания для БАК, экспериментаторы планируют проверять предсказания и искать следы тех или иных теорий в своих данных. Ожидается, что результаты, полученные на ускорителе, смогут ограничить фантазию теоретиков, закрыв некоторые из предложенных конструкций.

    Другое

    Также ожидается обнаружение физических явлений вне рамок Стандартной Модели. Планируется исследование свойств W и Z-бозонов, ядерных взаимодействий при сверхвысоких энергиях, процессов рождения и распадов тяжёлых кварков (b и t).

    История строительства
    .................................................. .................................................
    Идея проекта Большого адронного коллайдера (БАК) родилась в 1984 году и была официально одобрена десятью годами позже. Его строительство началось в 2001 году, после окончания работы предыдущего ускорителя — Большого электрон-позитронного коллайдера.

    В ускорителе предполагается сталкивать протоны с суммарной энергией 14 ТэВ (то есть 14 тераэлектронвольт или 14·1012 электронвольт) в системе центра масс налетающих частиц, а также ядра свинца с энергией 5,5 ГэВ (5,5·109 электронвольт) на каждую пару сталкивающихся нуклонов. Таким образом, БАК будет самым высокоэнергичным ускорителем элементарных частиц в мире, на порядок превосходя по энергии своих ближайших конкурентов — протон-антипротонный коллайдер Тэватрон, который в настоящее время работает в Национальной ускорительной лаборатории им. Э. Ферми (США), и релятивистский коллайдер тяжёлых ионов RHIC, работающий в Брукхейвенской лаборатории (США).

    Ускоритель расположен в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер. Туннель с длиной окружности 26,7 км проложен на глубине около ста метров под землёй на территории Франции и Швейцарии. Для удержания и коррекции протонных пучков используются 1 624 сверхпроводящих магнита, общая длина которых превышает 22 км. Последний из них был установлен в туннеле 27 ноября 2006 года. Магниты будут работать при температуре 1,9 K (−271 °C). Строительство специальной криогенной линии для охлаждения магнитов закончено 19 ноября 2006 года.

    Испытания

    11 августа 2008 года успешно завершена первая часть предварительных испытаний.[2] Во время испытаний пучок заряженных частиц прошёл чуть более трёх километров по одному из колец БАКа. Таким образом, учёным удалось проверить работу синхронизации предварительного ускорителя, так называемого протонного суперсинхротрона (SPS), и системы правой доставки луча. Эта система передаёт в основное кольцо разогнанные пучки таким образом, что они начинают двигаться по кольцу по часовой стрелке. В результате испытаний удалось оптимизировать работу системы.

    Второй этап испытаний прошёл 24 августа 2008 года. Была протестирована инжекция протонов в ускорительное кольцо БАК в направлении против часовой стрелки.[3]

    Официальный запуск коллайдера был произведён 10 сентября 2008 года, в 12:28 по московскому времени.[4] Запущенный пучок протонов успешно прошёл весь периметр коллайдера по часовой стрелке. Дальнейшие запуски частиц были проведены в направлении против часовой стрелки. На втором этапе испытаний будут производиться одновременные запуски пучков навстречу друг другу, чтобы наблюдать, что происходит при их «лобовых» столкновениях. На третьем этапе испытаний будут проходить эксперименты по столкновению частиц на более высоких энергиях. Выход на энергию 7 ТэВ на каждый протонный пучок намечен на начало 2009 года.

    Технические характеристики
    .................................................. .................................................
    Ускорители и детекторы LHC

    Светимость БАК во время первого пробега составит всего 1029 частиц/смІ·с. Это весьма скромная величина. Однако, после запуска БАК для экспериментальных исследований, светимость будет постепенно повышаться от начальной 5·1032 частиц/смІ·с до номинальной 1,7·1034 частиц/смІ·с, что по порядку величины соответствует светимостям современных B-фабрик BaBar (SLAC, США) и Belle (KEK, Япония). Выход на номинальную светимость планируется в 2010 году.

    Планируется, что на БАК будут работать четыре детектора: ATLAS (A Toroidal LHC ApparatuS), CMS (Compact Muon Solenoid), LHCb (The Large Hadron Collider beauty experiment) и ALICE (A Large Ion Collider Experiment). Установки ATLAS и CMS предназначены для поиска бозона Хиггса и «нестандартной физики». Детектор LHCb оптимизирован под исследования физики b-кварков, а детектор ALICE для поиска кварк-глюонной плазмы или кварк-глюонной жидкости в столкновениях ионов свинца.

    Россия принимает активное участие как в строительстве БАК, так и в создании всех четырёх детекторов, которые должны работать на коллайдере.[5]

    Потребление энергии

    Во время работы коллайдера расчётное потребление энергии составит 180 МВт. Предположительные энергозатраты всего CERNа на 2009 год с учётом работающего коллайдера — 1000 ГВт·ч, из которых 700 ГВт·ч придётся на долю ускорителя. Эти энергозатраты — около 10 % от суммарного годового энергопотребления кантона Женева. Сам CERN не производит энергию, имея лишь резервные дизельные генераторы.

    Распределённые вычисления
    Основная статья: LHC@home
    __________________________________________________ ______________
    Для управления, хранения и обработки данных, которые будут поступать с ускорителя БАК и детекторов, создаётся распределённая вычислительная сеть LCG (англ. LHC Computing GRID ), использующая технологию грид. Для определённых вычислительных задач будет задействован проект распределённых вычислений LHC@home.

    Неконтролируемые физические процессы
    __________________________________________________ _____________
    Некоторые специалисты и представители общественности высказывают опасения, что имеется отличная от нуля вероятность выхода проводимых в коллайдере экспериментов из-под контроля и развития цепной реакции, которая при определённых условиях теоретически может уничтожить всю планету. Точка зрения сторонников катастрофических сценариев, связанных с работой БАК, изложена на отдельном сайте.[6] Из-за подобных настроений БАК иногда расшифровывают как Last Hadron Collider (Последний Адронный Коллайдер).

    В этой связи наиболее часто упоминается теоретическая возможность появления в коллайдере микроскопических чёрных дыр,[7] а также теоретическая возможность образования сгустков антиматерии и магнитных монополей с последующей цепной реакцией захвата окружающей материи.

    Указанные теоретические возможности были рассмотрены специальной группой CERN, подготовившей соответствующий доклад, в котором все подобные опасения признаются необоснованными.[8][9] Адриан Кент опубликовал научную статью с критикой норм безопасности, которые продвигает CERN, поскольку ожидаемый ущерб (то есть произведение вероятности события на число жертв) является неприемлемым. Однако его утверждение, что официальной оценкой риска глобальной катастрофы является 1 к 50 миллионам[10], не соответствует действительности. В реальности может быть получено лишь ограничение сверху, а не сама вероятность, и современные ограничения сверху уже намного меньше этого числа[11].

    В качестве основных аргументов в пользу необоснованности катастрофических сценариев приводятся ссылки на то, что Земля, Луна и другие планеты постоянно бомбардируются потоками космических частиц с гораздо более высокими энергиями. Упоминается также успешная работа ранее введённых в строй ускорителей, включая релятивистский коллайдер тяжёлых ионов RHIC в Брукхейвене. Возможность образования микроскопических чёрных дыр не отрицается специалистами CERN, однако при этом заявляется, что в нашем трёхмерном пространстве такие объекты могут возникать только при энергиях, на 16 порядков больших энергии пучков в БАК. Гипотетически микроскопические чёрные дыры могут появляться в экспериментах на БАК в предсказаниях теорий с дополнительными пространственными измерениями. Такие теории пока не имеют каких-либо экспериментальных подтверждений. Однако, даже если чёрные дыры будут возникать при столкновении частиц в БАК, предполагается, что они будут чрезвычайно неустойчивыми вследствие излучения Хокинга и будут практически мгновенно испаряться в виде обычных частиц.

    21 марта 2008 года в федеральный окружной суд Гавайев был подан иск[12][13] Уолтера Вагнера (англ. Walter L. Wagner) и Луиса Санчо (англ. Luis Sancho), в котором они, обвиняя CERN в попытке устроить конец света, требуют запретить запуск коллайдера до тех пор, пока не будет гарантирована его безопасность.

    Аргументы в пользу катастрофического сценария

    По мнению сторонников катастрофического сценария, существует принципиальная разница между бомбардировкой Земли космическими частицами и экспериментами на ускорителе. В первом случае сталкиваются прилетающие из космоса ультрарелятивистские (летящие со скоростью, близкой к скорости света) элементарные частицы с элементарными частицами на Земле, скорость которых мала. Образующиеся частицы также являются ультрарелятивистскими и улетают в космическое пространство, не успев причинить Земле никакого вреда. В коллайдере же сталкиваются пучки элементарных частиц, летящие с ультрарелятивистскими скоростями в противоположных направлениях. Образующиеся микроскопические чёрные дыры и другие опасные частицы могут вылетать с любыми скоростями. Некоторые из них будут настолько медленными, что не смогут покинуть Землю.

    Общая теория относительности в виде, предложенном Эйнштейном, не допускает возникновения микроскопических чёрных дыр в коллайдере. Однако они будут возникать, если верны теории с дополнительными пространственными измерениями. По мнению сторонников катастрофического сценария, хотя такие теории и умозрительны, вероятность того, что они верны, составляет десятки процентов. Излучение Хокинга, приводящее к испарению чёрных дыр, также является гипотетическим — оно никогда не было экспериментально подтверждено. Поэтому есть достаточно большая вероятность того, что оно не действует.

    Кроме того, высока вероятность образования страпелек.

    Аргументы противников катастрофического сценария

    Сравнение с природными скоростями и энергиями


    Ускоритель предназначен для сталкивания таких частиц, как адроны и атомарные ядра. Однако, существуют природные источники частиц, скорость и энергия которых значительно выше, чем в коллайдере[14] (см.: Зэватрон). Такие природные частицы обнаруживают в космических лучах. Поверхность планеты Земля частично защищена от этих лучей, но, проходя через атмосферу, частицы космических лучей сталкиваются с атомами и молекулами воздуха. В результате этих природных столкновений в атмосфере Земли рождается множество стабильных и нестабильных частиц. В результате, на планете уже в течении многих миллионов лет присутствует естественный радиационный фон.

    Летом 2008 года учёные обнаружили в районе Крабовидной туманности природный ускоритель заряженных частиц.[15]

    То же самое (сталкивание элементарных частиц и атомов) будет происходить и в БАК, однако с меньшими скоростями и энергиями, и в гораздо меньшем количестве.

    Микроскопические чёрные дыры

    Если чёрные дыры могут возникать в ходе столкновения элементарных частиц, они также будут и распадаться на элементарные частицы, в соответствии с принципом CPT-инвариантности, являющимся одним из самых фундаментальных принципов квантовой механики.

    Далее, если бы гипотеза существования стабильных чёрных микро-дыр была верна, то они бы образовывались в больших количествах в результате бомбардировки Земли космическими элементарными частицами. Но бо́льшая часть прилетающих из космоса высокоэнергетических элементарных частиц обладают электрическим зарядом, поэтому часть чёрных дыр были бы электрически заряжены. Эти заряженные чёрные дыры захватывались бы магнитным полем Земли и, будь они в самом деле опасны, давно разрушили бы Землю. Механизм Швиммера, делающий чёрные дыры электрически нейтральными, очень похож на эффект Хокинга и не может работать, если не работает эффект Хокинга.

    К тому же, любые чёрные дыры, заряженные или электрически нейтральные, захватывались бы белыми карликами и нейтронными звёздами (которые, как и Земля, бомбардируются космическим излучением) и разрушали их. В результате время жизни белых карликов и нейтронных звёзд было бы гораздо короче, чем наблюдаемое в действительности. Кроме того, разрушаемые белые карлики и нейтронные звёзды испускали бы дополнительное излучение, которое в действительности не наблюдается.

    Наконец, теории с дополнительными пространственными измерениями, предсказывающие возникновение микроскопических чёрных дыр, не противоречат экспериментальным данным только если количество дополнительных измерений не меньше трёх. Но при таком количестве дополнительных измерений должны пройти миллиарды лет, прежде чем чёрная дыра причинит Земле сколько-нибудь существенный вред.

    Страпельки
    Основная статья: Страпелька

    Частицы, состоящие из верхних, нижних и странных кварков, обильно производятся в лабораторных условиях, но распадаются за время порядка 10-9 сек. Существует гипотеза, что достаточно большие ядра, состоящие из примерно равного количества верхних, нижних и странных кварков, являются стабильными, поскольку кварки относятся к фермионам, а принцип Паули запрещает двум одинаковым фермионам находиться в одном и том же квантовом состоянии. Если в ядре есть три разных типа кварков, а не два, как в обычных ядрах, то большее количество кварков может находиться в низкоэнергетических состояниях, не нарушая принципа Паули. Такие гипотетические ядра, состоящие из трёх типов кварков, называются страпельками.

    Гипотетически возможно, что страпельки каким-то неизвестным нам образом катализируют превращение обычной материи в страпельки, что может привести к превращению в страпельки всей планеты. Однако даже в этой ситуации коллайдер не представляет опасности, поскольку энергии столкновения частиц там на порядки ниже[источник?], чем те, при которых могут образовываться ядра (будь то обычные или страпельки). Кроме того, если бы страпельки возникали в БАК, они бы в ещё больших количествах возникали и в релятивистском ускорителе тяжёлых ионов RHIC, поскольку количество столкновений там выше, а энергии ниже. Но этого не происходит.

    Машина времени

    По информации международного издания New Scientist (англ.), профессор, доктор физико-математических наук Ирина Арефьева и член-корреспондент РАН, доктор физико-математических наук Игорь Волович[16] полагают, что этот эксперимент может привести к созданию машины времени.[17][18] Они считают, что протонные столкновения могут породить пространственно-временны́е червоточины («кротовые норы»).

    Противоположных взглядов придерживается доктор физико-математических наук из НИИ ядерной физики МГУ Эдуард Боос, отрицающий возникновение на БАК чёрных дыр, а следовательно, «кротовых нор» и путешествий во времени.[19]
    Последний раз редактировалось Калюня; 20.09.2008 в 11:41.

  2. #2
    Новичок
    Регистрация
    04.01.2009
    Сообщений
    0
    Поблагодарил(а)
    0
    Благодарностей: 0 (сообщений: 0)

    По умолчанию

    Противоположных взглядов придерживается доктор физико-математических наук из НИИ ядерной физики МГУ Эдуард Боос, отрицающий возникновение на БАК чёрных дыр, а следовательно, «кротовых нор» и путешествий во времени.
    а жаль, путишествия во времени эт круто

  3. #3
    Moderator Аватар для MARKONI
    Регистрация
    27.01.2008
    Адрес
    Russia .Sochi
    Возраст
    53
    Сообщений
    609
    Поблагодарил(а)
    0
    Благодарностей: 7 (сообщений: 3)

    По умолчанию

    Это все в теории,конечно скажу Вам приблуда просто чудная.Пока ее настроят как надо,разгонят до полного...все мы будим старичкамии тогда возможно и попутешествуем и во времени

    На данный момент мы(имеется земляне),копаем не там ,не-то и не в том месте.Есть идеи намнго глобальные и более вероятно осуществимые в обозримом будущем.

  4. #4
    Понимающий Аватар для meyram
    Регистрация
    20.10.2007
    Адрес
    Kazakhstan, Pavlodar
    Возраст
    42
    Сообщений
    329
    Поблагодарил(а)
    0
    Благодарностей: 1 (сообщений: 1)

    По умолчанию

    Цитата Сообщение от MARKONI Посмотреть сообщение
    На данный момент мы(имеется земляне),копаем не там ,не-то и не в том месте.
    Резонный вопрос - где, что и в каком месте?

  5. #5
    Banned
    Регистрация
    24.04.2008
    Возраст
    48
    Сообщений
    353
    Поблагодарил(а)
    0
    Благодарностей: 0 (сообщений: 0)

    Unhappy

    Цитата Сообщение от meyram Посмотреть сообщение
    Резонный вопрос - где, что и в каком месте?
    Размышления на тему! Смотрите и думайте сами.



    Сложно, но возможно
    Пол Дэйвис


    Знаменитый роман "Машина времени", написанный Гербертом Уэллсом в 1895 г., вдохновил многих писателей- фантастов. Возможно ли на самом де- ле путешествие во времени? Удастся ли создать аппарат, который смог бы отправить человека в прошлое или в будущее?

    Многие годы путешествия во времени не вписывались в рамки серьезной науки. Тем не менее эта тема стала чем - то вроде побочного занятия для физи- ков-теоретиков. Размышления о путешествиях во времени приводят к довольно забавным и в то же время весьма глубокомысленным выводам. Например, сущность единой теории физики, основанной на понимании связи между причиной и следствием, придется серьезно пересмотреть, если свободное перемещение во времени хотя бы в принципе возможно.

    Наиболее полное понятие о времени дает нам теория относительности Эйнштейна. До ее возникновения время считалось универсальным и абсолютным, одинаковым для каждого на- блюдателя независимо от его физического состояния. В своей специальной теории относительности Эйнштейн выдвинул предположение, что значение интервала времени, измеряемого между двумя событиями, зависит от того, каким образом движется наблю- датель. Иными словами, два наблюдателя, движущихся по-разному, отметят различную продолжительность интервалов между одними и теми же двумя событиями.

    Подобные явления часто называют "парадоксом близнецов". Представьте, что Салли и Сэм - близнецы. Салли садится в космический корабль и на высокой скорости отправляется к ближайшей звезде, затем разворачивается и летит на Землю, где ее ждет Сэм. Пусть для Салли продолжительность полета составит, скажем, один год. Когда она вернется, то обнаружит, что за время ее отсутствия на Земле прошло 10 лет, а ее ше ее на 9 лет. Получается, что Салли брат Сэм стар и Сэм теперь не ровесники, хотя и родились в один и тот же день.

    Этот пример иллюстрирует один из вариантов путешествия во времени: в результате своего полета Салли переместилась на 9 лет в будущее Земли.

    Сдвиг во времени

    Эффект растяжения времени возникает всякий раз, когда один наблюдатель движется относительно другого. В повседневной жизни мы не замечаем искажений времени, поскольку они проявляются лишь при околосветовых скоростях. Даже скорость самолетов настолько мала, что растяжение времени за обычный авиаперелет составляет лишь несколько наносекунд. Что и говорить, масштабы далеко не уэллсовские. Тем не менее атомные часы достаточно точны, чтобы зарегистрировать этот временной сдвиг и доказать, что время при движении растягивается. Итак, путешествие в будущее, пусть даже в очень близкое будущее, - подтвержденный факт.

    Три непростых этапа создания туннельной машины времени

    1 Сначала необходимо найти или создать звездные врата - туннель, соединяющий две точки пространства. Возможно, такие туннели существуют еще со времен Большого взрыва. В противном случае придется иметь дело с естественными субатомарными пространственно-временными туннелями, которые могут возникать и исчезать повсюду, или с искусственными - созданными при помощи ускорителей элементарных частиц. Микротуннели необходимо будет увеличивать до приемлемых размеров, вероятно, используя при этом энергетические поля, схожие с теми, которые заставили пространство мгновенно расшириться сразу после Большого взрыва.

    2 Затем необходимо обеспечить устойчивость туннеля. Введение в него отрицательной энергии, полученной квантовыми методами при помощи так называемого эффекта Казимира, позволит сигналам и материальным объектам безболезненно проходить сквозь звездные врата. Отрицательная энергия будет препятствовать стремлению туннеля сжаться в точку с бесконечной (или почти бесконечной) плотностью и стать черной дырой.

    3 Теперь с помощью космического кора*** можно отбуксировать один из входов туннеля к поверхности нейтронной звезды, обладающей невероятной плотностью и мощным полем тяготения, которое замедлит ход времени. При этом на другом конце туннеля время будет лететь быстрее, и входы звездных врат окажутся разделены не только в пространстве, но и во времени.

    Чтобы пронаблюдать действительно заметные искажения времени, нам придется заглянуть за пределы повседневного опыта. В больших ускорителях элементарные частицы могут быть разогнаны до скоростей, близких к скорости света. Некоторые из частиц, такие как мюоны, обладают "встроенными часами", ибо имеют определенный период полураспада. Наблюдения показывают, что в соответствии с теорией Эйнштейна мюоны, движущиеся в ускорителе с высокой скоростью, распадаются медленнее. Для неподвижного наблюдателя заметные временные искажения испытывают и частицы космических лучей. Скорость движения этих частиц настолько близка к скорости света, что с их "точки зрения" они пересекают галактику за считанные минуты, хотя в земной системе отсчета это занимает десятки тысяч лет. Если бы не проявлялось растяжение времени, подобные частицы никогда не достигли бы Земли.

    Скорость - один из способов перенестись в будущее. Другой способ - гравитация. В общей теории относительности Эйнштейн показал, что гравитация замедляет ход времени. Часы на крыше идут немного быстрее, чем часы в подвале, которые находятся ближе к центру Земли и поэтому сильнее испытывают влияние ее поля тяготения. Аналогично часы в космосе идут быстрее, чем на Земле. Наблюдаемые отклонения очень незначительны, однако они были зафиксированы высокоточными часами. Эти искажения времени были учтены при создании Глобальной системы позиционирования (GPS), иначе моряки, таксисты и крылатые ракеты постоянно сбивались бы с курса.

    Гравитация нейтронных звезд настолько велика, что время на их поверхности замедляется примерно на 30% по сравнению со временем на Земле. События, происходящие на Земле и наблюдаемые с одной из таких звезд, будут похожи на ускоренное видео. Черные дыры представляют предельный вариант искажения времени: на их поверхности время неподвижно застыло для внешнего наблюдателя. Это значит, что за то короткое время, которое наблюдатель затратит на падение на поверхность черной дыры, во всей остальной Вселенной пройдет целая вечность. Поэтому для стороннего наблюдателя область внутри черной дыры находится за пределами конца времен. Если бы некий космонавт сумел приблизиться к черной дыре на малое расстояние, а затем вернуться живым и невредимым, - несомненно, фантастичный и к тому же безрассудный проект, - то он смог бы оказаться в далеком будущем.

    Голова идет кругом

    До сих пор речь шла о перемещении в будущее. А как насчет путешествия в прошлое? Здесь все гораздо сложнее. В 1948 г. Курт Гедель (Kurt Gaedel) нашел решение для составленных Эйнштейном уравнений гравитационного поля, описывающих вращающуюся Вселенную. Путешествуя в пространстве такой Вселенной, космонавт может достичь своего прошлого. Это происходит вследствие воздействия поля тяготения на электромагнитные волны. В такой Вселенной свет (и, соответственно, причинно-следственная связь между объектами) будет вовлечен во вращательное движение, что позволит материальным объектам описывать траектории, замкнутые не только в пространстве, но и во времени. Пожав плечами, решение Геделя отложили в сторону как математический парадокс - в конце концов, нет свидетельств того, что вся наша Вселенная вращается. Тем не менее полученный Геделем результат показал, что теория относительности не исключает перемещения назад во времени. Более того, сам Эйнштейн был озадачен этим фактом.

    Самой большой проблемой при создании туннельной машины времени
    является построение пространственно-временного туннеля

    Были придуманы и другие сценарии путешествия в прошлое. Так, в 1974 г. Фрэнк Дж. Типлер (Frank J. Tipler) из Университета Тулейна рассчитал, что массивный бесконечно длинный цилиндр, вращающийся вокруг своей оси с околосветовой скоростью и закручивающий свет вокруг себя в кольцо, может позволить космонавтам попасть в свое прошлое. В 1991 г., Дж. Ричард Готт (J. Richard Gott) из Принстонского университета предсказал, что космические нити - структуры, сформировавшиеся, по мнению космологов, на ранних стадиях после Большого взрыва, - могут породить похожий эффект. А наиболее правдоподобный сценарий машины времени появился в середине 80-х гг. прошлого века. Он основан на концепции пространственно-временного туннеля.

    В научной фантастике пространственно-временные туннели часто называются звездными вратами; они представляют кратчайший путь между двумя далеко разнесенными в пространстве точками. Войдя в гипотетический пространственно-временной туннель, вы можете через несколько мгновений выйти из него на другом конце галактики. Звездные врата действительно вписываются в общую теорию относительности, согласно которой тяготение искажает не только время, но и пространство. Эта теория позволяет провести аналогию с объездной дорогой и туннелем, соединяющими две точки пространства. Математики называют такое пространство многосвязанным. Так же как туннель сквозь горный хребет обычно короче объездной дороги, так и пространственно-временной туннель может быть короче пути в обычном пространстве.

    Фантастический пространственно-временной туннель описан в романе Карла Сагана "Контакт", вышедшем в свет в 1985 г. Вдохновленный Саганом, Кип С. Торн (Kip S. Thorne) и его сотрудники из Калифорнийского технологического института решили выяснить, не противоречит ли идея звездных врат законам современной физики. Отправной точкой их исследований стало предположение о том, что пространственно-временной туннель должен быть схож с черной дырой, являясь телом с чудовищной силой тяготения. Однако в отличие от черной дыры, которая предлагает безвозвратно отправиться в никуда, звездные врата должны иметь не только вход, но и выход.

    В петле

    Чтобы пространственно-временной туннель был проходимым, он должен содержать, говоря словами Торна, экзотическую материю. Это должно быть нечто, создающее антигравитационное поле и тем самым препятствующее превращению массивной системы в черную дыру под действием собственной гигантской массы. Источником антигравитации, или гравитационного отталкивания, может стать отрицательная энергия. Как известно, отрицательные энергетические состояния присущи некоторым квантовым системам. Это наводит на мысль, что существование торновской экзотической материи не противоречит законам физики. Тем не менее пока неизвестно, удастся ли создать достаточное количество антигравитационного вещества для стабилизации туннеля (см. статью Лоренса Г. Форда (Lawrence H. Ford) и Томаса А. Романа (Thomas A. Roman) "Отрицательная энергия, пространственно-временные туннели и искривляющий двигатель" (Negative Energy, Wormholes and Warp Drive) в январском номере Scientific American за 2000 год).
    Источник парадоксов

    ПРЕСЛОВУТЫЙ МАТЕРИНСКИЙ ПАРАДОКС и ЕГО РАЗГАДКА
    Пресловутый материнский парадокс возникает тогда, когда люди или материальные объекты попадают в свое прошлое и изменяют его. Простой пример: бильярдный шар попадает в туннельную машину времени. Вылетая из нее в прошлом, он сталкивается с самим собой и препятствует своему попаданию в туннель.



    Разгадка парадокса проста: поведение бильярдного шара не должно противоречить логике или законам физики. Шар не может вылететь из туннеля так, чтобы самому себе помешать в него попасть. Зато он может пройти звездные врата бесконечным числом других способов.


    Вскоре Торн и его коллеги осознали, что в случае создания стабильного пространственно-временного туннеля он может быть использован как машина времени: пройдя через такой туннель, можно будет оказаться не только в другой точке Вселенной, но и в другой точке времени - в прошлом или в будущем.

    Чтобы приспособить туннель для путешествий во времени, необходимо один из его входов отбуксировать на достаточно близкое расстояние к поверхности нейтронной звезды. Тяготение звезды замедлит время вблизи этого входа в туннель, поэтому разница во времени между двумя входами будет накапливаться. Если затем поместить оба входа в соответствующем месте пространства, разница во времени между ними останется зафиксированной.

    Предположим, что эта разница составит 10 лет. Пройдя через такой туннель в одном направлении, космонавт перенесется на 10 лет в будущее. Другой космонавт, пройдя сквозь туннель в обратном направлении, переместится на 10 лет в прошлое. Вернувшись с большой скоростью к месту своего отправления через обычное пространство, второй космонавт сможет оказаться дома еще до начала своего путешествия. Другими словами, пространственная петля может стать петлей во времени. Единственное ограничение - космонавт не может вернуться в тот период времени, который предшествовал созданию пространственно-временного туннеля.

    Самой большой проблемой при создании туннельной машины времени является построение пространственно-временного туннеля. Возможно, наше пространство пронизано такими туннелями еще со времени Большого взрыва. В таком случае высокоразвитая цивилизация могла бы воспользоваться одним из них. Пространственно-временные туннели могут также возникать в микроскопических масштабах и иметь размеры порядка атомного ядра. В принципе такой туннель может быть стабилизирован энергетическим импульсом и затем как-нибудь растянут до приемлемых размеров.СИСТЕМА ХАРАКТЕРИСТИКИ НАКАПЛИВАЕМЫЙ
    ВРЕМЕННОЙ СДВИГ
    Авиаперелет скорость 920 км/ч
    в течение 8 часов 10 наносекунд (относительно инерциальной системы отсчета)
    Рейс атомной подводной лодки глубина 300 м в течение
    6 месяцев 500 наносекунд (относительно уровня моря)
    Нейтрон космического луча 1018 электрон-вольт Среднее время жизни увеличивается с 15 минут до 30 тыс. лет
    Нейтронная звезда красное смещение составляет 0,2 Временные интервалы увеличиваются на 20 % (относительно открытого космоса


    Запрещено цензурой!

    Допустим, что инженерные трудности преодолимы. Тогда создание машины времени открывает ящик Пандоры, содержащий массу причинных парадоксов. Представьте себе путешественника, который отправляется в прошлое и убивает свою мать, которая в тот момент была еще маленькой девочкой. Бессмыслица, не правда ли? Если девочка погибает, то она не может стать матерью нашего путешественника. Но если он никогда не был рожден, то как он попал в прошлое и убил свою мать?

    Парадоксы такого рода возникают всякий раз, когда путешественник пытается внести в свое прошлое заведомо невозможные изменения. Однако это не мешает кому-нибудь быть частью своего прошлого. Предположим, что, попав в прошлое, путешественник спасает юную леди от убийства, а она затем становится его матерью. Причинная петля в этом случае является самосогласованной и не выглядит парадоксальной. Таким образом, причинная согласованность может накладывать ограничения на действия путешественника во времени и вместе с тем не исключает путешествия во времени как таковые.

    Не являясь строго парадоксальными, путешествия во времени, несомненно, остаются загадочными. Вообразим, что путешественник попадает в будущее на один год вперед и в свежем выпуске Scientific American знакомится с новой математической теоремой. Запомнив ее доказательство, он возвращается в прошлое и рассказывает о ней некоему студенту, который затем публикует статью об этой теореме в упомянутом журнале. Разумеется, это та самая статья, которую читал наш путешественник. Встает вопрос: откуда взялась информация о теореме? Не от путешественника, поскольку он всего лишь прочитал о теореме статью. Но и не от студента, который услышал о теореме от путешественника. Получается, что информация появилась ниоткуда и безо всякой причины.

    Неестественные последствия путешествий во времени заставили некоторых фантастов напрочь отказаться от этой идеи. Стефан Хокинг (Stephen W. Hawking) из Кембриджского университета выдвинул "гипотезу защиты хронологии", которая запрещает существование причинных петель. Поскольку теория относительности, как известно, допускает путешествия в прошлое, то для защиты хронологии должен существовать какой-либо фактор, запрещающий такие путешествия. Что может стать таким фактором? Возможно, на помощь придут квантовые процессы. Существование машины времени позволит частицам попадать в свое собственное прошлое. Вычисления показали, что возникающая в результате этого цепная реакция породит расходящуюся энергетическую волну, которая разрушит туннель.

    Защита хронологии все еще остается гипотезой, поэтому путешествия во времени пока не могут считаться невозможными. Вероятно, окончательное решение этой проблемы будет возможно в случае успешного обобщения квантовой механики и теории тяготения с использованием теории струн и ее дополнений (так называемой М-теории). Вполне возможно, что ускорители элементарных частиц следующего поколения будут способны создавать субатомарные пространственно-временные туннели, стабильности которых будет достаточно для совершения ближайшими частицами стремительных временных петель. Это будет лишь отголосок уэллсовского видения машины времени, который, впрочем, навсегда изменит нашу картину физической реальности.

Информация о теме

Пользователи, просматривающие эту тему

Эту тему просматривают: 1 (пользователей: 0 , гостей: 1)

Ваши права

  • Вы не можете создавать новые темы
  • Вы не можете отвечать в темах
  • Вы не можете прикреплять вложения
  • Вы не можете редактировать свои сообщения
  •  
Rambler's Top100 Яндекс цитирования 12354